If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x=x^2-4x-5
We move all terms to the left:
x-(x^2-4x-5)=0
We get rid of parentheses
-x^2+x+4x+5=0
We add all the numbers together, and all the variables
-1x^2+5x+5=0
a = -1; b = 5; c = +5;
Δ = b2-4ac
Δ = 52-4·(-1)·5
Δ = 45
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{45}=\sqrt{9*5}=\sqrt{9}*\sqrt{5}=3\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-3\sqrt{5}}{2*-1}=\frac{-5-3\sqrt{5}}{-2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+3\sqrt{5}}{2*-1}=\frac{-5+3\sqrt{5}}{-2} $
| –3x+25+x+21=2 | | 0.6r=4,5 | | -17=-5x+5-2 | | .5z^2+7×2=z | | 1+3a+3=10 | | 0.6r=0.4 | | (5+x)(5-x)=9 | | w/5+w/9=8 | | f−9/8=9/5 | | X/10=x/12-8 | | 8+5(3q-4)=7(q-12 | | 9x-(2x+3)=12 | | 2x-5/12+x=2x+5/2+4 | | 30=9+3v-10v | | f−9/8=95 | | -5x-5x=-10 | | 2(x+9)=5x+72 | | 2x-5/12+x=2x+5/2=4 | | 3/4y+3=21 | | 10/24=5/x | | -2x^2+2=-x^2+1 | | (2x-5/12)+x=(2x+5/2)=4 | | 5b=125 | | 3x-8+2x+18=180 | | |3x-4|=2 | | 7+4x=-61 | | 2(x+4)^2-10=12 | | 9d=1=-8=6d | | 2(-5x+3)=6(5-3x | | x-1/6=1/5 | | 12z−6+15z=27z−5 | | 8=(1/3)x+2 |